Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level
AS \& A Level

CANDIDATE
NAME

CENTRE NUMBER

CHEMISTRY

Paper 3 Advanced Practical Skills 1
May/June 2016

Candidates answer on the Question Paper.
Additional Materials: As listed in the Confidential Instructions

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Give details of the practical session and laboratory where appropriate, in the boxes provided.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer all questions.
Electronic calculators may be used.
You may lose marks if you do not show your working or if you do not use appropriate units.
Use of a Data Booklet is unnecessary.
Qualitative Analysis Notes are printed on pages 10 and 11.
A copy of the Periodic Table is printed on page 12.
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
1	
2	
3	
Total	

This document consists of 12 printed pages.

1 You will determine the concentration of a solution of hydrochloric acid by diluting it and then titrating the diluted solution against an alkali.

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

FA 1 was made by dissolving 1.06 g of sodium hydroxide, NaOH , in distilled water to make $250 \mathrm{~cm}^{3}$ of solution.
FA 2 is hydrochloric acid, HCl . bromophenol blue indicator

(a) Method

- Pipette $25.0 \mathrm{~cm}^{3}$ of FA 2 into the $250 \mathrm{~cm}^{3}$ volumetric flask. Keep remaining FA 2 for use in Question 2.
- Add distilled water to make $250 \mathrm{~cm}^{3}$ of solution and shake the flask thoroughly. Label this solution FA 3.
- Fill the burette with FA 3.
- Use the second pipette to transfer $25.0 \mathrm{~cm}^{3}$ of FA 1 into a conical flask.
- Add about 10 drops of bromophenol blue.
- Perform a rough titration and record your burette readings in the space below. The end point is reached when the solution becomes a permanent yellow colour.

The rough titre is \qquad cm^{3}.

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make certain any recorded results show the precision of your practical work.
- Record, in a suitable form below, all of your burette readings and the volume of FA 3 added in each accurate titration.

I	
II	
III	
IV	
V	
VI	
VII	

(b) From your accurate titration results, obtain a suitable value for the volume of FA 3 to be used in your calculations. Show clearly how you obtained this value.
\qquad cm^{3} of FA 3. [1]
(c) Calculations

Show your working and appropriate significant figures in the final answer to each step of your calculations.
(i) Calculate the concentration, in moldm³ ${ }^{-3}$, of sodium hydroxide in FA 1. Use the data in the Periodic Table on page 12.
concentration of NaOH in FA $1=$ \qquad moldm^{-3}
(ii) Calculate the number of moles of sodium hydroxide present in $25.0 \mathrm{~cm}^{3}$ of FA 1 .

$$
\text { moles of } \mathrm{NaOH}=
$$

\qquad mol
(iii) Deduce the number of moles of hydrochloric acid present in the volume of FA 3 you have calculated in (b).
moles of $\mathrm{HCl}=$ \qquad mol
(iv) Calculate the concentration, in moldm^{-3}, of hydrochloric acid in FA 2.

2 Metal carbonates react with dilute acids to produce carbon dioxide. You will identify the metal, \mathbf{M}, in a metal carbonate, $\mathbf{M}_{2} \mathrm{CO}_{3}$, by measuring the volume of carbon dioxide produced during the reaction of $\mathbf{M}_{2} \mathrm{CO}_{3}$ with excess hydrochloric acid.

$$
\mathrm{M}_{2} \mathrm{CO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{MCl}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

FA 2 is hydrochloric acid, HCl , as used in Question 1.
FA 4 is $\mathrm{M}_{2} \mathrm{CO}_{3}$.
(a) Method

Read all instructions before starting your practical work.
The diagrams below may help you in setting up your apparatus.

- Fill the tub with water to a depth of about 5 cm .
- Fill the $250 \mathrm{~cm}^{3}$ measuring cylinder completely with water. Hold a piece of paper towel firmly over the top, invert the measuring cylinder and place it in the water in the tub.
- Remove the paper towel and clamp the inverted measuring cylinder so the open end is in the water just above the base of the tub.
- Use the $50 \mathrm{~cm}^{3}$ measuring cylinder to place $50 \mathrm{~cm}^{3}$ of FA 2 into the reaction flask, labelled \mathbf{X}.
- Check that the bung fits tightly in the neck of flask \mathbf{X}, clamp flask \mathbf{X}, and place the end of the delivery tube into the inverted $250 \mathrm{~cm}^{3}$ measuring cylinder.
- Weigh the container with FA 4 and record the mass in the space below.
- Remove the bung from the neck of the flask. Tip all the FA 4 into the acid in the flask and replace the bung immediately. Remove the flask from the clamp and swirl it to mix the contents.
- Swirl the flask occasionally until no more gas is evolved. Replace the flask in the clamp.
- Reweigh the container and record the mass, and the mass of FA 4 used, in the space below.
- When no more gas is collected, measure and record the final volume of gas in the measuring cylinder in the space below.

(b) Calculations

Show your working and appropriate significant figures in the final answer to each step of your calculations.
(i) Use the volume of gas you collected to calculate the number of moles of gas produced. [Assume that 1 mole of gas occupies $24.0 \mathrm{dm}^{3}$ under these conditions.]
moles of gas = \qquad mol
(ii) Use your answer to (i) to deduce the number of moles of $\mathrm{M}_{2} \mathrm{CO}_{3}$ used in the reaction.
moles of $\mathbf{M}_{2} \mathrm{CO}_{3}=$ \qquad mol
(iii) Use your answer to (ii) and the mass of FA 4 used to calculate the relative formula mass, M_{r} of $\mathbf{M}_{2} \mathrm{CO}_{3}$.

$$
M_{\mathrm{r}} \text { of } \mathbf{M}_{2} \mathrm{CO}_{3}=
$$

\qquad
(iv) Use your answer to (iii) and the Periodic Table on page 12 to identify metal M. Explain your answer.
\mathbf{M} is \qquad
\qquad
\qquad
(c) (i) $\mathrm{A} 250 \mathrm{~cm}^{3}$ measuring cylinder can be read to $\pm 1 \mathrm{~cm}^{3}$.

Calculate the maximum percentage error in your reading of the volume of gas.
maximum percentage error $=$ \%
(ii) It is likely that the volume of carbon dioxide that you collected was less than the theoretical volume.

Give two reasons why this volume is likely to be less than the theoretical volume.
In each case, suggest and explain a modification to the practical procedure that could help to reduce the difference in volume.
reason
\qquad
modification
\qquad
\qquad
reason \qquad
\qquad
modification \qquad
\qquad
\qquad
[Total: 11]

3 Qualitative Analysis

At each stage of any test you are to record details of the following.

- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added

Where gases are released they should be identified by a test, described in the appropriate place in your observations.

You should indicate clearly at what stage in a test a change occurs.
Marks are not given for chemical equations.
No additional tests for ions present should be attempted.
If any solution is warmed, a boiling tube MUST be used.
Rinse and reuse test-tubes and boiling tubes where possible.
Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.
(a) FA 5, FA 6, FA 7 and FA 8 are aqueous solutions of organic compounds. All of FA 5, FA 6, FA 7 and FA 8 contain carbon, hydrogen and oxygen only.

Half fill the $250 \mathrm{~cm}^{3}$ beaker with water and heat it to about $80^{\circ} \mathrm{C}$. Turn off the Bunsen burner. This will be used as a water bath.

To a 2 cm depth of aqueous silver nitrate in a boiling tube add 2 drops of aqueous sodium hydroxide and then add ammonia dropwise until the brown solid just disappears. This solution is Tollens' reagent and is needed in a test in (i).
(i) Carry out the following tests on FA 5, FA 6, FA 7 and FA 8 and record your observations in the table.

test	observations			
	FA 5	FA 6	FA 7	FA 8
To a 1 cm depth in a test-tube, add a small spatula measure of sodium carbonate.				
To a few drops in a test-tube, add a 1 cm depth of Tollens' reagent. Place the tube in the water bath and leave to stand. When you have completed this test rinse all tubes used.				
To a 1 cm depth in a test-tube, add a few drops of acidified potassium manganate(VII). Place the tube in the water bath and leave to stand.				

(ii) Using your observations from the table, what functional group is present in both FA 5 and FA 6?
\qquad
(iii) Using your observations from the table, what functional group is present in both FA 5 and FA 8?
\qquad
(iv) What type of reaction is occurring in the potassium manganate(VII) test?
\qquad
(v) Using your observations from the table, what functional group is present in FA 7?
\qquad
(vi) Suggest a test that would confirm the presence of the functional group in a pure sample of FA 7. Include the result you would expect the test to give.

Do not carry out this test.

\qquad
\qquad
\qquad
(b) FA 9 and FA 10 are solids that each contain one anion from those listed in the Qualitative Analysis Notes on page 11.
(i) Carry out the following tests on FA 9 and FA 10 and record your observations in the table.

test	observations	
	FA 9	FA 10
To a spatula measure of solid in a boiling tube, add a 1 cm depth of aqueous sodium hydroxide. Warm, then,		
add a small piece of aluminium foil.		
Place a spatula measure of solid in a hard-glass test-tube. Heat gently at first and then more strongly.		

(ii) Using your observations from the table, which two anions could be present in FA 9 and FA 10?
anion or \qquad
(iii) Suggest a test that would allow you to decide which of the anions is present. State what observations you would expect.
\qquad
\qquad
(iv) Carry out this test on FA 9 and FA 10 to decide which anion is present in each.
observation for FA 9 \qquad anion in FA 9 is \qquad observation for FA 10 anion in FA 10 is \qquad

Qualitative Analysis Notes

Key: [ppt. = precipitate]

1 Reactions of aqueous cations

ion	reaction with	
	$\mathrm{NaOH}(\mathrm{aq})$	$\mathrm{NH}_{3}(\mathrm{aq})$
aluminium, $\mathrm{A} \mathrm{l}^{3+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, $\mathrm{NH}_{4}^{+}(\mathrm{aq})$	no ppt. ammonia produced on heating	-
barium, $\mathrm{Ba}^{2+}(\mathrm{aq})$	faint white ppt. is nearly always observed unless reagents are pure	no ppt.
calcium, $\mathrm{Ca}^{2+}(\mathrm{aq})$	white ppt. with high [$\mathrm{Ca}^{2+}(\mathrm{aq})$]	no ppt.
$\begin{aligned} & \text { chromium(III), } \\ & \mathrm{Cr}^{3+}(\mathrm{aq}) \end{aligned}$	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess
$\begin{aligned} & \text { copper(II), } \\ & \mathrm{Cu}^{2+}(\mathrm{aq}) \end{aligned}$	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution
iron(II), $\mathrm{Fe}^{2+}(\mathrm{aq})$	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
iron(III), $\mathrm{Fe}^{3+}(\mathrm{aq})$	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, $\mathrm{Mg}^{2+}(\mathrm{aq})$	white ppt. insoluble in excess	white ppt. insoluble in excess
$\begin{aligned} & \text { manganese(II), } \\ & \mathrm{Mn}^{2+}(\mathrm{aq}) \end{aligned}$	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
zinc, $\mathrm{Zn}^{2+}(\mathrm{aq})$	white ppt. soluble in excess	white ppt. soluble in excess

2 Reactions of anions

ion	reaction
carbonate, $\mathrm{CO}_{3}{ }^{2-}$	CO_{2} liberated by dilute acids
chloride, $\mathrm{Cl}^{-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
bromide, $\mathrm{Br}^{-}(\mathrm{aq})$	gives cream ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (partially soluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
iodide, $\mathrm{I}^{-}(\mathrm{aq})$	gives yellow ppt. with $\mathrm{Ag}^{+}(\mathrm{aq})$ (insoluble in $\mathrm{NH}_{3}(\mathrm{aq})$)
nitrate, $\mathrm{NO}_{3}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil
nitrite, $\mathrm{NO}_{2}^{-}(\mathrm{aq})$	NH_{3} liberated on heating with $\mathrm{OH}^{-}(\mathrm{aq})$ and Al foil; NO liberated by dilute acids (colourless $\mathrm{NO} \rightarrow$ (pale) brown NO_{2} in air)
sulfate, $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (insoluble in excess dilute strong acids)
sulfite, $\mathrm{SO}_{3}{ }^{2-}(\mathrm{aq})$	gives white ppt. with $\mathrm{Ba}^{2+}(\mathrm{aq})$ (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH_{3}	turns damp red litmus paper blue
carbon dioxide, CO_{2}	gives a white ppt. with limewater (ppt. dissolves with excess CO_{2})
chlorine, Cl_{2}	bleaches damp litmus paper
hydrogen, H_{2}	"pops" with a lighted splint
oxygen, O_{2}	relights a glowing splint

The Periodic Table of Elements

$\ulcorner コ$ コ	
\therefore ○	
®岀言㭏管	
	® ¢ ¢
๕吅	
	® 을
	$\bar{\circ}$
	\＆¢ ¢ ¢ ¢
	8

To avoid the issue of disclosure of answer－related information to candidates，all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet．This is produced for each series of examinations and is freely available to download at www．cie．org．uk after the live examination series．

